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Di�usion Characteristics of Upwind Schemes

on Unstructured Triangulations

William A. Wood
�
and William L. Kleb

�

NASA Langley Research Center, Hampton, VA 23681

The di�usive characteristics of two upwind schemes, multi-dimensional uctuation

splitting and dimensionally-split �nite volume, are compared for scalar advection-diffusion

problems. Algorithms for the two schemes are developed for node-based data represen-

tation on median-dual meshes associated with unstructured triangulations in two spatial

dimensions. Four model equations are considered: linear advection, non-linear advection,

di�usion, and advection-di�usion. Modular coding is employed to isolate the e�ects of the

two approaches for upwind ux evaluation, allowing for head-to-head accuracy and e�-

ciency comparisons. Both the stability of compressive limiters and the amount of arti�cial

di�usion generated by the schemes is found to be grid-orientation dependent, with the

uctuation splitting scheme producing less arti�cial di�usion than the dimensionally-split

�nite volume scheme. Convergence rates are compared for the combined advection-dif-

fusion problem, with a speedup of 2{3 seen for uctuation splitting versus �nite volume

when solved on the same mesh. However, accurate solutions to problems with small

di�usion coe�cients can be achieved on coarser meshes using uctuation splitting rather

than �nite volume, so that when comparing convergence rates to reach a given accuracy,

uctuation splitting shows a 20{25 speedup over �nite volume.

Nomenclature

A;B Flux Jacobians

c Nodal update coe�cients
~F Convective ux vector, ~F = ~F (x; y; u)

h Mesh spacing

{̂; |̂ Cartesian unit vectors

J�1 Inverse Jacobian of the coordinate transfor-
mation

` Edge length

n̂ Outward unit normal to control cell

n Length-scaled inward normal

Q Fluctuation ratio

~r Distance vector from node to face

Si Median-dual area about node i

t Time

u Dependent variable

x; y Cartesian coordinates

�; � Curvilinear advection speeds

� Boundary of control cell

 Limiter bound

# Finite element linear shape function
~� Advection velocity vector

� Di�usion coe�cient
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�; � Curvilinear coordinates

� Timestep

� Arti�cial dissipation|�nite volume

� Element advective uctuation

�� ; �� Fluctuation components

��
�

; ��
�

Limited uctuations
��� ; ��� Arti�cial dissipation|uctuation splitting

�v Viscous uctuation

 Limiter function


 Area of control cell

r Gradient operator

Introduction

U
PWIND discretizations for advection equations
typically introduce arti�cial numerical dissipa-

tion into the solution. When combined advection-
diffusion problems are considered, this dissipation in-
troduced in the discretization of the advection terms
should be less than the true physical di�usion. To
this end the di�usive characteristics of upwind schemes
are investigated and their performance in resolving
solutions to advection-diffusion problems with small
di�usion coe�cients is analyzed.

Two node-based, median-dual methods for modeling
convective uxes are considered. The �rst is a tradi-
tional dimensionally-split �nite volume (FV) scheme.1

Dimensionally-split schemes are known to introduce
excess dissipation when discontinuities are not aligned
with the mesh.2

The second method is the NNL3 uctuation splitting
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(FS) scheme. FS has a more-compact stencil than FV
for second-order formulations and exhibits \zero cross-
di�usion"y in a grid-aligned condition. Both of these
attributes should lead to less introduced dissipation
as compared with FV. The sensitivity of FS to grid
orientation and resulting production of cross-di�usion
is investigated in the present report.
The use of compressive limiter functions is inves-

tigated with both algorithms. Also, local timesteps
based on positivity arguments are tested, and in some
cases the optimum timestep for convergence is found
to be less than the largest stable timestep. This be-
havior is attributed to residual oscillations forced by
\ringing" of the limiter functions.
Formulation of FS schemes for di�usion problems

is a recent research area.4, 5 The present study seeks
to quantify the relative merits of using a low-di�usion
advection operator to resolve advection-diffusion prob-
lems with small di�usion coe�cients. Lessons learned
on these problems will guide the development of com-
puter codes for solving compressible viscous uid dy-
namic problems.

Governing Equations

The non-linear advection/di�usion equation,

ut +r � ~F = r � (�ru) (1)

is cast as a hyperbolic conservation law, to which
steady-state solutions are sought.

Finite Volume

In FV form, using the divergence theorem Eqn. 1
becomes, Z




ut d
 = �

I
�

(~F � �ru) � n̂ d� (2)

where 
 is the median dual about node i and � is
the boundary of 
. Using mass lumping to the nodes,
similar to an explicit �nite element treatment,6 the
temporal evolution is evaluated on a time-invariant
mesh as,Z




ut d
 = Si
@ui

@t
!

Si

�

�
ut+�i � uti

�
(3)

The discretization of the convective ux, ~F , is per-
formed using Barth's implementation1 of the upwind,
locally one-dimensional, approximate Riemann prob-
lem of Roe.7I

�

~F � n̂ d�!
X
faces

�
1

2

�
~Fin + ~Fout

�
� n̂��

�
�� (4)

y\Zero cross di�usion" refers to the practice of adding arti�-
cial di�usion terms in the streamwise direction only, as opposed
to adding arti�cial dissipation in both the streamwise and cross-
stream directions.

where the arti�cial dissipation provides the upwinding,

� =
1

2
j ~An̂x + ~Bn̂yj(uout � uin) (5)

with n̂ = n̂x{̂+ n̂y |̂. Out and in refer to states on the
outside and inside of 
 at the face. A and B are the
ux Jacobians,

A =
@F (1)

@u
; B =

@F (2)

@u
(6)

and ( ~A; ~B) represent their conservative linearizations
at the cell face.7

Reconstruction from the nodal unknowns to the cell
faces, as,

uface = ui +  ru � ~r (7)

is performed with Barth's limited, unweighted least-
squares procedure to provide second-order spatial ac-
curacy in smoothly-varying regions of the solution.
Two methods for evaluating the di�usion term are

incorporated into FV. The more compact of the two,
the �nite element discretization, is discussed in the
following section. The less-compact di�usion formula
is obtained by discretizing the last term of Eqn. 2, in
a manner similar to Eqn. 4,I

�

�ru � n̂ d�!
X
faces

��

2
(ruin +ruout) � n̂�� (8)

The di�usion coe�cient is averaged over the length of
the face. The gradients from Eqn. 7 are not limited
before averaging at the control-volume faces in Eqn. 8,
as suggested by Anderson and Bonhaus.8

Fluctuation Splitting

The NNL FS scheme is presented as a slight re-
interpretation of the work of Sidilkover and Roe.3 The
current interpretation is as a volume integral over tri-
angular elements, without recourse to the divergence
theorem. The discretized equations, however, are iden-
tical.
Integrating Eqn. 1 over an element, where 
 is now

the area of the triangular element,Z



ut d
 = �

Z



r � ~F d
 +

Z



r � (�ru) d
 (9)

For linear variation of the dependent variable over the
element, the temporal evolution is,Z




ut d
 = 
�ut =



3
(u1t + u2t + u3t) (10)

where u1, u2, and u3 correspond to the three nodes
de�ning element 
.
De�ning local curvilinear coordinates, � and �, par-

allel to sides 12 and 23, respectively (Fig. 1), the
divergence of the convective ux can be written,

r � ~F = F (1)
x + F (2)

y =
1

J�1

�
n̂2 � ~F� � n̂1 � ~F�

�
(11)
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Fig. 1 Fluctuation splitting element nomencla-

ture.

De�ning the scaled inward normal, n = �hn̂, where
h is a mesh edge length, the divergence (Eqn. 11) be-
comes,

r � ~F =
1

2


�
�h12n2 � ~F� + h23n1 � ~F�

�
(12)

If ~F is linear or quadratic in u, then for a linear
variation of u over the element,Z




r � ~F d
 = ��21u+ ��32u (13)

where the di�erence operator is de�ned �21u = u2�u1
and the advection speeds are,

� = �
1

2
(n2x

~A+ n2y
~B); � =

1

2
(n1x

~A+ n1y
~B) (14)

~A and ~B are now the conservative linearizations over
the triangular element.9

The advective uctuation can be de�ned,

� = �

Z



r � ~F d
 (15)

The uctuation can be split,

� = �� + �� (16)

where,

�� = ���21u; �� = ���32u (17)

Following Sidilkover10 the uctuation is limited to
achieve a second-order scheme,

��
�

= �� + �� (Q) = ��
�
1�

 (Q)

Q

�
(18)

��
�

= �� � �� (Q) = �� (1�  (Q)) (19)

with,

Q = �
��

��
(20)

Upwinding is achieved through the introduction of
the arti�cial dissipation terms,

��� = sign(�)��
�

; ��� = sign(�)��
�

(21)

Combining Eqn. 10 with a distribution scheme for
Eqn. 15 and summing over all elements, the contribu-
tions to nodal time derivatives can be written in the
form,

S1u1t  
1

2
(��

�

� ���) + COE

S2u2t  
1

2
(��

�

+ ���) +
1

2
(��

�

� ���) + COE

S3u3t  
1

2
(��

�

+ ���) + COE (22)

where COE stands for contributions from other ele-
ments containing these nodes.
A �nite element treatment, similar to Tomaich,4 is

employed to obtain the di�usive uctuation,

�v =

Z



r � (�ru) d
 (23)

Assuming piecewise-linear data and an element-aver-
aged di�usion coe�cient leads to a di�usive uctuation
of zero for the triangular element. Introducing the
linear nodal shape functions #i, such that

P3
i=1 #i = 1,

the elemental di�usive uctuation can be expressed
�v =

P3
i=1 �vi = 0, where

�vi =

Z



#ir � (��ru) d
 (24)

Integrating by parts,

�vi =

I
�

#i��ru � n̂ d��

Z



��ru � r#i d
 (25)

The boundary integral in Eqn. 25 will cancel on sum-
ming contributions for interior nodes. The remaining
volume integral can be evaluated analytically,

�vi = �
��

2
ru � ni+1 = �

��

4


3X
j=1

ujnj+1 � ni+1 (26)

Distributing this di�usive uctuation to the nodes and
keeping only the larger of the physical or arti�cial dis-
sipation leads to the update formula,

S1u1t  
��
�

2
+max

�
�
���

2
; �v1

�
+ COE

S2u2t  
��
�

+ ��
�

2
+max

 
( ��� � ���)

2
; �v2

!
+ COE

S3u3t  
��
�

2
+max

� ���

2
; �v3

�
+ COE (27)
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Boundary Conditions

Explicit Dirichlet inow boundary conditions are
employed. Advective outow boundaries are treated
for free convection through the boundary nodes, al-
lowing boundary nodes to be handled in the same
manner as interior nodes. For the di�usion terms a
Neumann outow boundary is applied with zero gra-
dient, achieved by setting the boundary integral in
Eqn. 25 to zero.

Limiter Functions

The limiter functions employed by both schemes are
cast as a limit on the ratio of two values. The limiting
proposed by Barth1 is interpreted as a non-symmetric
limiter11 consistent with one-dimensional limiting in
the maximum gradient direction. The limiting on the
reconstruction (Eqn. 7) is performed on the ratio,

 =  

�
umin=max � ui

2ru � ~r

�
(28)

where umin=max is the minimum (resp. maximum) of
ui and all distance-one neighbors. This same inter-
pretation has been put forth by Bruner and Wal-
ters,12 though they identi�ed Barth's limiting with
the symmetric Superbee limiter, rather than the non-
symmetric Chakravarthy and Osher11 limiter.
Minmod, van Albada,13 Superbee, and 14 sym-

metric limiters are utilized for FV (Eqn. 7) and FS
(Eqns. 18 and 19). The  limiter, of which the Min-
mod ( = 1) and Superbee ( = 2) are special cases,
is,

 (Q) = max[0; min(Q; 1); min(Q; )] (29)

Timestep

Both schemes are formulated either as Gauss-Seidel
time-relaxation or forward Euler time-evolution algo-
rithms.
The nodal updates for the discrete system can be

formed as a sum of contributions from all nodes.

ut+�i =
X
j

cjuj = ciui +
X
j 6=i

cjuj (30)

For positivity15 each of the coe�cients in Eqn. 30 must
be non-negative.

Advective Timestep restriction

In the FV context the nodal update (Eqn. 30) can
be rearranged into the form of Eqn. 3,

Si

�
(ut+�i � uti) =

Si

�
(ci � 1)ui +

Si

�

X
j 6=i

cjuj (31)

For the upwind, edge-based algorithm considered here,
each Si

�
cj will be related to a positive-de�nite coe�-

cient equal to zero for outowing faces and related to

the wavespeed for inowing faces, yielding the restric-
tion � � 0 on the timestep. The remaining term can
be expressed,

Si

�
(ci � 1) = �

X
k about i

ck (32)

where the ck coe�cients are also positive-de�nite, ei-
ther zero for inowing faces or related to the wavespeed
for outowing faces. Rearranging and imposing the
positivity constraint, ci � 0, yields the timestep re-
striction,

1�
�

Si

X
k about i

ck = ci � 0 (33)

� �
SiP

k about i ck
(34)

For FS, the nodal updates are assembled from
Eqn. 22 as,

Si

�
(ut+�i � uti) =

X
j 6=i

cj(uj � ui) (35)

In this case the cj coe�cients are formed as contri-
butions from the uctuations in the triangles to both
the left and the right of mesh edge {|. The positivity
restriction on � is found to have a similar form as for
�nite volume (Eqn. 34),

� �
SiP
j 6=i cj

(36)

Local time-stepping based on positivity is shown
to yield stable, yet non-converging, solutions in some
second-order cases (see Results section). Robust con-
vergence is obtained by using the �rst-order c's in
Eqns. 34 and 36, even for second-order-accurate spa-
tial discretizations.

Di�usive Timestep Restriction

Unfortunately, the �nite element formulation for the
di�usive terms (Eqn. 26) cannot be guaranteed to pre-
serve local positivity on obtuse triangles (see Barth1).
Considering only the contributions from the current
node, the coe�cient for the di�usion term can be writ-
ten,

ut+�i = uti

 
1�

�

Si

X
T

�`2

4


!
(37)

The appropriate edge length is the side of the element
opposite the current node. The resulting timestep re-
striction is,

� �
SiP
T

�`2

4


(38)

In a similar manner the timestep restriction from
Eqn. 8 is,

� �
SiP

T
3���2

4


(39)
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Contour
spacing:
0.05 - 0.95
0.1 increments

Fig. 2 First-order uctuation splitting, uniform

advection.

Results

Linear Advection

The linear advection equation is obtained from
Eqn. 1 by setting � = 0 and ~F = ~�u, yielding,

ut +r � (~�u) = 0 (40)

A divergence-less advection velocity is considered, such
that r � ~� = 0. Equation 40 can then be written,

ut + ~� � ru = 0 (41)

Uniform Advection

Uniform advection of the Heavyside function at
�45 degrees, ~� = (1;�1), on a cut-cartesian mesh is
shown for �rst-order FS, second-order FS, and second-
order FV in Figs. 2{4, respectively. The mesh is
shown as the dashed background, and equally-spaced
contours vary on [0,1], the minimum and maximum
solution values. The spread of the contour lines with
spatial evolution is indicative of the amount of dissipa-
tion introduced into the solution by the discretization
of the convective terms.

Second-order FS is seen to be greatly superior to
�rst-order, as expected, reproducing the exact solu-
tion in this case with no introduced dissipation. Also,
FS represents a signi�cant reduction in numerical dif-
fusion versus the corresponding FV scheme, with both
results employing the Minmod limiter.

However, the \zero cross-di�usion" results of Fig. 3
with FS are misleading. In Fig. 5 the advection veloc-
ity has been rotated counter clockwise by 90 degrees
on the same grid. Clearly, the arti�cial dissipation
introduced by the FS scheme has been increased.

The corresponding FV solution is shown in Fig. 6.
While the change in contour spreading for the FV
scheme between Figs. 4 and 6 is less dramatic than
the change in spreading for the FS scheme in Figs. 3

-1 -0.5 0
0

0.5

1

Y

X

U = 1

U = 0

λ = ( 1, -1 )

Contour
spacing:
0.05 - 0.95
0.1 increments

Fig. 3 Second-order uctuation splitting, uniform

advection.

-1 -0.5 0
0

0.5

1

Y

X

U = 1

U = 0

λ = ( 1, -1 )

Contour
spacing:
0.05 - 0.95
0.1 increments

Fig. 4 Second-order �nite volume, uniform advec-

tion.

and 5, the FS results still exhibit less di�usion than
the FV results, comparing Figs. 5 and 6.

Employing the compressive Superbee limiter with
the FS scheme yields the results of Fig. 7. In this case
the discontinuity is con�ned to a 2{3 cell stencil, and
does not grow in space. Applying the Superbee lim-
iter to FV cannot eliminate all arti�cial dissipation for
this case, as is possible with FS. The FV results (not
shown) corresponding to Fig. 7 spread the disconti-
nuity over four cells by the outow boundary, with a
continually broadening trend.

However, while it is possible to use the Superbee
limiter with FS for this case, compressive limiters can
be unstable on di�erent grid orientations. For exam-
ple, no degree of compression is stable for the case of
Fig. 3. This potential for instability is related to global
positivity, as discussed by Sidilkover and Roe.3

The e�ect of using a general unstructured grid is
investigated in Figs. 8 and 9. The unstructured grid
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spacing:
0.05 - 0.95
0.1 increments

Fig. 5 Second-order uctuation splitting, uniform

advection.
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Fig. 6 Second-order �nite volume, uniform advec-

tion.
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Contour
spacing:
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Fig. 7 Second-order uctuation splitting with

compressive limiter.
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spacing:
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Fig. 8 Fluctuation splitting on unstructured mesh.
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Contour
spacing:
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Fig. 9 Finite volume on unstructured mesh.

in this case was generated using Vgrid.16, 17 The FS
solution exhibits less dissipation, but is not as smooth
as the FV solution. While the FS scheme preserves
contact discontinuities over larger spatial ranges than
the FV scheme, FS does not appear to degenerate
gracefully with regard to extreme coarsening of the
unstructured mesh for this test case. This behavior
could have negative implications for applications em-
ploying multigrid convergence acceleration.

Circular Advection

Circular advection is achieved by setting
~� = (y; �x). A decaying sine-wave input pro�le
is used,

u(x; 0) = (ex sin�x)2

Results for the two schemes, using the Minmod
limiter, are presented on the worse-case cut-cartesian
mesh in Figs. 10 and 11. Again, the FS results are con-
siderably less di�usive than the dimensionally-split FV
solution.
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Contour
spacing:
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Fig. 10 Fluctuation splitting, circular advection.
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Contour
spacing:
0.025 - 0.375
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Fig. 11 Finite volume, circular advection.

The circular-advection problem is also applied on
an unstructured mesh. The input pro�le for this case
consists of both a top-hat function and a decaying sine
wave, allowing comparisons between the schemes for
both sharp discontinuities and smooth gradients. The
input pro�le is,

u(x; 0) =

8>>>><
>>>>:

�
e2x sin(2�x)

�2
�0:5� x < 0

0 �0:6� x <�0:5

0:4 �0:8� x <�0:6

0 �1� x <�0:8

Results for this case are displayed in Fig. 12 for FS
and Fig. 13 for FV, both using the Minmod limiter. FS
performs signi�cantly better at preserving the top-hat
distribution. FS also does a better job of maintaining
the minimum and maximum values of the sine distri-
bution, though both schemes do well on the smooth
gradient portion of the sine wave.

-1 -0.5 0
0

0.5

1

Y

X U = (e2x sin(2πx))2

U = 0

λ = ( y, -x )

Contour
spacing:
0.025 - 0.375
0.05 increments

U = 0U = 0.4U = 0

Fig. 12 Fluctuation splitting on unstructured

mesh, circular advection.

-1 -0.5 0
0

0.5

1

Y

X U = (e2x sin(2πx))2

U = 0

λ = ( y, -x )

Contour
spacing:
0.025 - 0.375
0.05 increments

U = 0U = 0.4U = 0

Fig. 13 Finite volume on unstructured mesh, cir-

cular advection.

Non-linear Advection

The non-linear advection equation is obtained from

Eqn. 1 by setting ~F = (u
2

2 ; u) with � = 0. In non-
conservative form the equation is written,

ut + uux + uy = 0

A coalescing shock problem is considered, with an
anti-symmetric input pro�le,

u(�1; y) = u(0; y) = 0

u(x; 0) = �2x� 1 on x = (�1; 0)

The exact solution to this problem contains symmet-
ric expansion fans on the sides and a compression fan
at the inow that coalesces into a vertical shock at
(x; y) = (� 1

2 ;
1
2 ).

The �rst mesh is cut-cartesian containing 26 � 26
nodes. The FS and FV solutions, both using the Min-
mod limiter, are presented in Figs. 14 and 15. Both
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Fig. 14 Fluctuation splitting, Burgers equation.

-1 -0.5 0
0

0.5

1

Y

U = 0 U = 0

U = -2x -1 X

Contour
spacing:
-1 − 1
0.1 increments

Fig. 15 Finite volume, Burgers equation.

algorithms exhibit the same grid dependence on the
amount of arti�cial dissipation as seen before, with
the left-half solutions having more di�usion than the
right halves, due to the grid orientation. Both meth-
ods perform the same in the compression-fan region,
coalescing into a shock to within the accuracy of the
input-pro�le discretization.

The shock is more sharply de�ned by FS than by
FV. Fig. 14 has the correct shock speed, with nearly
the entire gradient captured in one cell thickness. In
contrast, Fig. 15 shows a slightly incorrect shock speed
when using FV, as the shock progresses to the left
beyond the coalescence point, even though the dis-
cretization is conservative. The incorrect shock speed
results from a non-symmetric distribution of the de-
pendent variable to the left and right of the shock,
caused by the excessive arti�cial di�usion generated
on the grid-misaligned (left-hand) side.

Contours of the absolute value of the error are pre-
sented in Figs. 16 and 17. Errors from both computed

-1 -0.5 0
0

0.5

1

Y

X

Contour
spacing:
0 − 1
0.1 increments

Fig. 16 Fluctuation splitting, Burgers equation,

absolute error.
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0.5

1

Y

X

Contour
spacing:
0 − 1
0.1 increments

Fig. 17 Finite volume, Burgers equation, absolute

error.

solutions show a lack of symmetry, again reecting the
grid dependence of the arti�cial di�usion terms. The
error levels from FS are less than from FV. The shock
curvature in the FV solution at the coalescing point is
clearly visible in Fig. 17, resulting in signi�cant down-
stream errors in the shock location as compared with
the FS errors.

This problem is repeated on a 25 � 25 mesh with
symmetric diagonal cuts, favorably aligned with the
advection directions. The FS and FV solutions,
Figs. 18 and 19, are in good agreement. Plots of
the absolute error contours, Figs. 20 and 21, show FS
to be a little more accurate than FV for this case.

The �nal mesh for this case is a truly unstructured
triangulation containing 847 nodes and 1617 cells. The
nodes are clustered to the outow boundary, with a
bias towards the left-hand side. The FS solution is
presented in Fig. 22, showing very accurate and crisp
shock resolution and good symmetry in the solution
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Fig. 18 Fluctuation splitting, Burgers equation,

symmetric mesh.
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Fig. 19 Finite volume, Burgers equation, symmet-

ric mesh.
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Fig. 20 Fluctuation splitting, Burgers equation,

absolute error.
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Fig. 21 Finite volume, Burgers equation, absolute

error.
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Fig. 22 Fluctuation splitting, Burgers equation,

unstructured mesh.
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Fig. 23 Finite volume, Burgers equation, unstruc-

tured mesh.
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Fig. 24 Pure-di�usion problem error, di�usion

terms from Eqn. 8.

contours despite the mesh-clustering bias. In contrast,
the FV solution in Fig. 23 has a more-di�use shock and
again an incorrect shock speed, with the outow shock
o�set to the left of x = � 1

2
. The FV solution is also

somewhat less symmetric than the FS solution.

Linear Di�usion

Choosing ~F = 0, the heat-conduction equation is
obtained from Eqn. 1,

ut = r � (�ru)

The test problem, a steady-state boundary value
problem on a unit square, is taken from Tomaich.4

The Dirichlet boundary values are,

u(�1; y) = 0; u(0; y) = sin(�y)

u(x; 0) = 0; u(x; 1) = � sin(�x)

The analytical solution on x = [�1; 0], y = [0; 1] is,

u(x; y) =
1

sinh�
[sinh(�(x+1)) sin(�y)

+ sinh(�y) sin(�(x+1))]

Both di�usion discretizations, Eqns. 8 and 26, are
compared on a 438-node unstructured mesh. Fig-
ures 24 and 25 plot the absolute value of the error
in the converged solutions using Eqns. 8 and 26, re-
spectively.

The �nite element treatment is clearly more ac-
curate, and is used to discretize the di�usion terms
for both FV and FS in the following section. The
average-gradient results in Fig. 24 appear to exhibit a
decoupling mode, similar to odd/even decoupling for
structured meshes.

-1

-1

-0.5

-0.5

0

0

0 0

0.5 0.5

1 1

Y

X

Contour
spacing:
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Fig. 25 Pure-di�usion problem error, di�usion

terms from Eqn. 26.

Linear Advection-Di�usion

The �nal test case is a linear advection-diffusion
problem of Smith and Hutton.18 The ux function
is ~F = ~�u, with,

~� =
�
2y(1� x2); �2x(1� y2)

�
The streamlines for this problem, while not truly circu-
lar, are similar in orientation to the circular advection
problem. The inow pro�le is,

u(x; 0) = 1 + tanh(20x+ 10)

The di�usion coe�cient is chosen to be a constant,
� = 10�3. No closed-form solution is known to this
problem.

A sequence of �ve unstructured meshes is consid-
ered. The meshes, in order of increasing resolution,
are: (A) 134 nodes, (B) 495 nodes, (C) 1928 nodes,
(D) 7529 nodes, and (E) 28,915 nodes. The meshes
have no preferred clustering or stretching and have
nominal node-spacings of 0.1, 0.05, 0.025, 0.0125, and
0.00625, labeled as Meshes A{E, respectively.

L2-norms of the arti�cial and physical dissipations
computed using both FS and FV are presented for each
mesh in Table 1. Notice that the norm of the arti�-
cial dissipation for FS is lower than the norm of the
physical dissipation on Meshes D and E. In contrast,
the arti�cial dissipation from FV is still larger than
the physical dissipation even on the �nest grid. Since
the algorithms select only the larger of the physical or
arti�cial dissipation (Eqn. 27), Table 1 suggests FS is
grid resolved on Mesh D.

Further evidence of a grid-resolved FS solution is
seen in Figs. 26 and 27. The FS solution on Mesh E
at the outow boundary is presented along with the
inow pro�le and the corresponding pure-advection
(� = 0) FS solution in Fig. 26. The pure-advection
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Table 1 L2-norms (�105) of arti�cial and physical

viscosities for advection/di�usion problem.

FS FV

jj��jj2 jj�v jj2 jj�jj2 jj�v jj2

(art.) (phys.) Mesh (art.) (phys.)

1274 215 A 1918 190

597 265 B 640 176

192 161 C 153 107

54 76 D 123 59

13 36 E 45 34

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0
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1.5

1.75

2

U

Y

FS, ν=10-3

FS, ν=0
Inflow profile

Fig. 26 Fluctuation splitting pro�les on �nest

mesh, advection/di�usion problem.

solution is seen to replicate the inow pro�le ex-
tremely well, with a clear separation from the di�used,
� = 10�3, solution. Plotting only the FS results with
respect to grid re�nement, Fig. 27 shows a convergence
of the outow pro�le by Mesh C for FS.

The accuracy of FS and FV are compared in Fig. 28,
where the Mesh-E outow solutions from FS and FV
are plotted along with the Mesh-C FS result. Taking
the FS Mesh E solution to be the \truth" solution, it
is clear that FS on Mesh C is more accurate in this
case than FV is on the �nest mesh.

Computational e�ciencies of the two algorithms are
compared in Fig. 29, where the L2-norm of the resid-
ual is plotted versus CPU time for the �ne-mesh FS
and FV solutions, along with the FS convergence his-
tory on Mesh D. The Mesh-E FS solution converges in
700 sec on a 195 MHz SGI R10000 CPU. The corre-
sponding FV solution takes 2.7 times longer than FS,
due, in part, to the need to reconstruct gradient infor-
mation at each node with FV for second-order spatial
accuracy. However, considering the solution time to
reach a given accuracy, it is more reasonable to com-
pare the FS solution time onMesh D to the �nest-mesh

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

U

Y

A
B
C
D
E

Mesh

Fig. 27 Fluctuation splitting grid convergence, ad-

vection/di�usion problem.
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Fig. 28 Fluctuation splitting and �nite volume for

advection/di�usion problem.

FV solution. The FS Mesh-D solution took only 80 sec,
a factor of 23.6 times less than FV on Mesh E, and still
shows better accuracy than the �ne-mesh FV solution.

An even greater speedup is seen with FS in con-
junction with the van Albada limiter, where now the
Mesh-B solution over-plots the curve from the �nest
grid, shown in Fig. 30. The corresponding FV result
using the van Albada limiter on Mesh B is included,
and clearly falls short of the FS accuracy. The FV
case was repeated with the highly-compressive Super-
bee limiter with little improvement in accuracy. The
solution time for FS on Mesh B is three seconds, yield-
ing a speedup factor of 600 over FV.

The �nal set of results addresses convergence issues
while pushing the positivity limits. Figure 31 com-
pares two convergence histories for the second-order
FS on Mesh B. The non-converging, though stable,
convergence history is the result of using strict posi-
tivity arguments to set the timestep (Eqn. 36). The
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Fig. 29 Convergence histories for advec-

tion/di�usion problem.
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Fig. 30 Advection/di�usion results using van Al-

bada limiter.

resulting solution is bounded and approximately cor-
rect but oscillatory|attributed to limiter \ringing".
Full convergence is achieved by using �rst-order pos-
itivity coe�cients, which are not dependent on the
limiters. The resulting local timesteps will not be as
large as true second-order positivity would allow, but
appear to be more robust.

Summary of Results

Fluctuation splitting and dimensionally-split �nite
volume schemes are compared in detail as applied
to scalar advection, di�usion, and advection-di�usion
problems. The uctuation splitting scheme is seen to
introduce less arti�cial dissipation while treating ad-
vection terms, allowing for more accurate resolution of
weakly dissipative advection-di�usion problems. The
ability to resolve solutions to these problems on coarser
meshes makes the uctuation splitting scheme the pre-
ferred choice over dimensionally-split �nite volume.

0 25 50 75 100
10-6

10-5

10-4

10-3

10-2

10-1

100

Res2

Iteration

Second-order positivity
coefficients

First-order positivity
coefficients

Fig. 31 Convergence rates using �rst- and second-

order positivity coe�cients.

Linear advection test problems are utilized to inves-
tigate the dependence of arti�cial di�usion production
on grid orientation. Both uctuation splitting and �-
nite volume are shown to exhibit grid dependencies,
but with uctuation splitting producing less arti�cial
dissipation on all grids considered.

A non-linear coalescing shock problem further ex-
plores grid dependencies as cases are constructed that
result in incorrect shock speeds for �nite volume. Fluc-
tuation splitting shows correct shock speeds for all
grids and provides tighter shock capturing than �nite
volume.

An advection-di�usion problem with small physical
dissipation (di�usion coe�cient of 10�3) is considered
where the reduction in arti�cial dissipation with uc-
tuation splitting results in a signi�cant accuracy im-
provement over �nite volume. Convergence times are
compared, showing a speedup of 2.7 for uctuation
splitting over �nite volume on identical grids, using
an explicit point Gauss-Seidel relaxation. However,
a grid convergence study shows uctuation splitting
has better resolution of the solution on a coarser mesh
than �nite volume does on the �nest mesh, resulting
is a speedup of 23.6 for uctuation splitting over �nite
volume.

Based upon these signi�cantly reduced solution
times for solving model problems, as compared to
the current state-of-the-art dimensionally-split �nite
volume method, uctuation splitting is considered a
worthwile scheme to pursue for modeling uid dynamic
problems.
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